Equisingular Deformations of Plane Curve and of Sandwiched Singularities

نویسنده

  • Theo de Jong
چکیده

Let C be an isolated plane curve singularity, and (C, l) be a decorated curve. In this article we compare the equisingular deformations of C and the sandwiched singularity X(C, l). We will prove that for l ≫ 0 the functor of equisingular deformations of C and (C, l) are equivalent. From this we deduce a proof of a formula for the dimension of the equisingular stratum. Furthermore we will show how compute the equisingularity ideal of the curve singularity C, given the minimal (good) resolution of C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equisingular Deformations of Plane Curves in Arbitrary Characteristic

In this paper we develop the theory of equisingular deformations of plane curve singularities in arbitrary characteristic. We study equisingular deformations of the parametrization and of the equation and show that the base space of its semiuniveral deformation is smooth in both cases. Our approach through deformations of the parametrization is elementary and we show that equisingular deformati...

متن کامل

On the Freeness of Equisingular Deformations of Plane Curve Singularities

We consider surface singularities in C3 arising as the total space of an equisingular deformation of an isolated curve singularity of the form f(x, y)+zg(x, y) with f and g weighted homogeneous. We give a criterion that such a surface is a free divisor in the sense of Saito. We deduce that the Hessian deformation defines a free divisor for nonsimple weighted homogeneous singularities, and that ...

متن کامل

The Dimension of the Equisingular Stratum of an Isolated Plane Curve Singularity

Let C be an isolated plane curve singularity. Zariski defined and studied equisingular deformations of C, see [12], [13], [14], and proved that this is the same as μ–constant deformations. Wahl [10] showed that the functor of equisingular deformations is smooth, say of dimension es(C). This therefore is also the dimension of the μ–constant stratum. In this paper we give a formula for es(C). In ...

متن کامل

On Deformations of Singular Plane Sextics

We study complex plane projective sextic curves with simple singularities up to equisingular deformations. It is shown that two such curves are deformation equivalent if and only if the corresponding pairs are diffeomorphic. A way to enumerate all deformation classes is outlined, and a few examples are considered, including classical Zariski pairs; in particular, promising candidates for homeom...

متن کامل

Deformation Theory of Sandwiched Singularities

In this paper we describe the deformation theory of sandwiched sin-gularities in terms of-constant deformations of plane curves, and a divisor of points on it. This leads to an immediate understanding of the smoothings of sandwiched singularities in terms of pictures: certain conngurations of points and curves with only d-fold points in the plane. The topology of a smoothing can be described co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000